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PRIMARY PRODUCTIVITY BY PHYTOPLANKTON IN THE TIDAL, FRESH
POTOMAC RIVER, MARYLAND, MAY 1980 TO AUGUST 198l

by Ronald R. H. Cohen and Sheryl 0. Pollock

ABSTRACT

Primary productivity, the assimilation of carbon and evolution of
oxygen by phytoplankton, was measured on samples collected from the tidal
Potomac River, Maryland. The studies were performed monthly from May 1980
through September 1981. Additional studies were done once a week in August
1980, twice a week from August 4 through 8, 1980, and twice in September
1980. Depth-integrated samples were collected at five stations and incu-
bated in boxes that were exposed to natural sunlight. The boxes were covered
with neutral density filters transmitting 100-, 65-, 32-, 16- and 6-percent
surface light. River water was pumped continuously over the samples. The
extinction of light in the water column was measured when samples were col-
lected.

Methods for routine productivity analysis were evaluated. No differ-
ence was found between productivity (1) determined in-situ and in the boxes;
(2) measured in 300-milliliter and 1-1iter B.0.D. bottTes; (3) measured in
point samples and depth integrated samples; and (4) calculated from short
term (4 hours) and long term (10-24 hours) incubations. Productivity in
samples that were rotated among different light intensities every 15 minutes
(simulating mixing) was higher than those in bottles that remained station-
ary. Respiration was significantly less in samples pumped through a hose
from those collected using a depth-integrating sampler.

Depth-integrated primary productivity was determined from the produc-
tivity data using an equation modified from one reported in the literature.
Depth-integrated gross primary productivity was highest in August 1980 and
1981 and lowest in January 1980.

INTRODUCTION

The tidal Potomac River and Estuary, Md. extends 187 kilometers from
above Washington, D.C. at Chain Bridge to the Chesapeake Bay (fig. 1). The
tidal, fresh-water reach, approximately 62 km long, has a volume of 3.4 x
108 mé and receives drainage from the non-tidal Potomac River and metropolitan
Washington, D.C. It has an average flow of 310 m3 sec-l and receives approxi-
mately 1.4 x 100 m3 per day of treated waste water from municipal treatment
facilities. During the summer, a zone of high phytoplankton concentration
extends from river kilometer 180 at Memorial Bridge to kilometer 126 at
Quantico, Va., the approximate, late-summer location of the brackish-fresh-
water interface (fig. 2).
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Figure 1.--Tidal Potomac River and Estuary. Shaded area is the transition
zone between fresh, tidal river and brackish estuary. Thick
lines delineate approximate boundaries of zones.
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Figure 2.--The fresh, tidal Potomac River. Thick lines identify sites of
cross sections that were sampled frequently as part of the
Potomac River transport study. The thin lines identify sites
of cross sections that were sampled in less detail or in special
studies.
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Phytoplankton produce organic compounds from inorganic nutrients using
light as an energy source. The organic material formed by the phytoplankton
is called "primary production" and primary production per unit time per
volume of water (or under a unit surface area), is called "primary produc-
tivity". The process by which phytoplankton synthesize organic material,
photosynthesis, consumes inorganic carbon and releases oxygen. Thus, a
measurement of the rate of increase of oxygen in solution due to the phyto-
plankton is a direct measurement of primary productivity.

Primary productivity measurements can yield valuable information about
aquatic ecosystems. The ratio of the moles of carbon dioxide taken up to the
motes of oxygen evolved by phytoplankton (the phytosynthetic quotient) is
approximately 1.0 (Parsons and others, 1977). Therefore, primary produc-
tivity measurements are estimates of the increase of the carbon biomass of
phytoplankton--an indication of the rate of growth. The effects of light,
temperature, nutrients, and toxins on phytoplankton growth can be determined
from primary productivity measurements. The information can be used to
estimate the contribution of phytoplankton to the diel dissolved oxygen
regimes of aquatic systems.

Sampling stations for productivity analysis or productivity experiments
are listed below (with the depth used to calculate depth-integrated produc-
tivity) and shown in figure 2. (Potomac River at Douglas Point is shown in
fig. 1.) River distances are measured from the center of a line drawn be-
tween Smith Point and Point Lookout at the mouth of the Potomac River.

Station number Station name River Distance Depth, in
from Chesapeake meters
Bay, in kilometers

01652590 Potomac River at 168 2.2
Alexandria, Va.
(in the channel near

the Virginia shoreline)
384736077013300 Potomac River across 168 2.8

from Alexandria, Va.,
near Maryland shoreline

384318077020300 Potomac River at 160 3.9
Hatton Point, Md.

384136077054600 Potomac River at 152 3.7
Marshall Hall
(Mt. Vernon), Va.

3833818077072800 Potomac River at 144 5.6
Hallowing Point, Va.



Station number Station name River Distance Depth, in
from Chesapeake meters

Bay, in kilometers

01658710 Potomac River at 126 5.8
Quantico, Va.

382640077159900 Potomac River at 117 3.8
Douglas Point, Md.

Purpose and Scope

The purpose of this study was to determine primary productivity and
respiration of the fresh, tidal Potomac River. The data will be used by the
authors and other researchers involved in modelling chemical and biological
properties to calculate phytoplankton growth rates. Methods are documented
in detail so that the report could serve as a reference.

The report covers the period from May 1980 through August 1981. Five

stations were selected for study that are representative of biologically
important reaches of the fresh, tidal Potomac River.

Acknowledgements

Joan Woodward performed the chlorophyll a analyses from May 1980 through
April 1981. Sheryl 0. Pollock performed chlorophyll a analyses from May
through September 1981.

METHODS

Measurement of primary productivity poses many problems in methodology
(Berman and Eppley, 1974). Some of the difficulties include:

1) Large surface area to volume ratio in bottles offers colonization
substrate for bacteria. The bacteria increase respiration rates and
remove nutrients from the water.

2) Sedimentation during incubation increases self-shading by phytoplankton.

3) Incubation at fixed depths or 1ight intensities induces inhibition of
productivity at high light levels in phytoplankton that are adapted to
mixing (Marra, 1978).

4) Pump sampling of phytoplankton may result in cell damage and aberrations
in productivity capacity.

5) All difficulties increase with the length of the incubation.



Therefore, several alternative procedures for measuring primary produc-
tivity were considered and tested. We examined the differences due to methods
of sample collection and the volume, length of time and technique of incu-
bation. The methods chosen for primary productivity measurements were
selected on the basis of precision, accuracy, and available resources such
as research ships and personnel.

We used a 1ight- and dark-bottle oxygen method for determining phyto-
plankton productivity similar to that described by Greeson and others (1977).
Depth-integrated samples were collected with an open, weighted, 4-liter,
polyethylene bottle fitted with a vent tube. The bottle was filled as it was
lowered and raised in the water column at a uniform rate. Samples were
composited until a 20-liter, polyethylene carboy was filled. At the Quantico
station, two verticals were depth integrated and composited. The samples
were collected during the evening (between 1700 and 2100 hours) and incubated
overnight and throughout the next day, for a total of 24 hours. The first
two productivity determinations (May 1980) were performed from dawn to dusk.
Dawn to dusk, 4-hour and 2-hour, mid-day productivity incubations have been
recommended (Vollenweider, 1965). However, nutrients for nutrient limitation
bioassays must be added during the evening to demonstrate any significant
stimulation during the next day (Stross, 1980).

In August and September 1980, samples were often supersaturated with
oxygen at the time of collection. The 20-liter carboy was shaken until
oxygen decreased to saturation concentration. To delay oxygen supersat-
uration in August and September 1981, oxygen was purged from the carboy by
bubbling nitrogen gas through perforated, polyethylene tubes until dissolved
oxygen levels were 4-5 mg L-1. In spite of these precautions, oxygen de-
gassing occurred in bottles exposed to full sunlight by 1300 to 1400 hours
on some clear days in August and September. As soon as small bubbles were
observed in several bottles, dissolved oxygen was measured in all the bottles
for that station.

Samples from Alexandria stations were placed in incubation bottles and
were incubating typically within 30-45 minutes of sampling. Samples from
stations more distant from the incubation site required delays of 1-2 hours.
Clear and opaque, black, 300-mL B.0.D. bottles were filled by siphon from the
20-1iter bottles. Additional nutrients for bioassays were added to nine
bottles. One milliliter of 18.7 millimole ammonium chloride was added to
three bottles and 1 milliliter of 4.12 millimole sodium nitrate was added to
another three to yield minimum concentrations of 0.02 and 0.01 millimole NHy
as ammonia, and NO3 as nitrate, respectively. One milliliter of 0.74 milli-
mole potassium phosphate was added to three bottles such that the concentra-
tion of phosphate attained a minimum of 0.002 millimole as PO4. Prior to
incubation, dissolved oxygen was measured in all the bottles with an
Orbispherezf polarographic oxygen probe; the B.0.D. bottles were then sealed.

The bottles were placed in 92-cm wide by 122-cm long by 15-cm-high
wooden boxes that were placed on a dock (fig. 3). The boxes were filled to
overflowing with river water by submersible pumps capable of 0.003 m3/s.
Thus, the bottles were maintained at in situ river temperatures. The boxes

-6 -



Figure 3.--Diagram of dock-side incubator used for productivity incubations:
1 is a hose from which river water flows into the incubation box;

2 is a nylon-mesh screen; 3 is the incubation box; 100, 65, 32,
16, 6 are the percentages of surface light intensity as regulated
by the number of screens; N03, PO, , NH3 are nitrate~, phosphate-
and ammonia-enriched samples” incubated”under 100 percent light.
The dark bottle is incubated under 6 percent light.

\-17—



were divided into five sections by 2-cm-high partitions. One section was
exposed to full, surface sunlight. The other sections were covered by 1, 2,
3, or 5 layers of nylon screen transmitting 65-, 32-, 16-, and 6-percent
surface light, respectively.

A black tarpaulin covered the boxes from the beginning of the incubation

(in the evening) until just before dawn. Three clear bottles were placed in
full sunlight and two were placed in box sections exposed to 65-, 32-, 16-,
and 6-percent of full sunlight. Bottles spiked with nutrients were placed
in full sunlight. Five black bottles were placed under the five layers of
screen. Bottles were shaken and rotated every hour to eliminate artifacts

due to settling phytoplankton and sediment. Dissolved oxygen was measured

at the end of the incubation. Samples for chlorophyll-a analysis and cell

enumeration and indentification were taken at the beginning and end of the

incubations. The chlorophyll-a concentrations were reported as averages

of those measured at the beginning and end of the incubation.

Assumptions

Oxygen-based primary productivity was calculated from the light- and
dark-bottle data. The calculations are based on the following assumptions:

1) Phytoplankton were the only source of oxygen in the sealed light-
bottles.

2) Community respiration (bacteria, phytoplankton, and zooplankton) was
the only oxygen sink.

3) Phytoplankton respiration was the same in the 1ight and dark bottles.
Although studies have suggested that light reduces phytoplankton res-
piration and increases other forms of phytoplankton oxygen consumption
(Harris and Piccinin, 1977), evidence concerning the effect of Tight
on respiration is contradictory.

4) Phytoplankton respiration is constant with depth.

5) Phytoplankton productivity per unit of light in the afternocon is the

same as in the morning. Lehman and others (1975) reported that produc-

tivity per unit of light in the afternoon is lower than that in the

morning. Greeson and others (1977) recommend the use of Vollenweider's
method (Vollenweider, 1965) when incubations do not last for the entire

dawn to dusk period. The method is based on a plot of "percent cumu-
lative productivity versus time", with sunrise to midday accounting
for 56 percent of the daily productivity and midday to sunset repre-
senting the other 44 percent for a cloudless day. Cohen and others

1/The mention of brand names in this report is for identification purposes
only and does not constitute endorsement by the U.S. Geological Survey.
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(1982), Schindler and Fee (1973) and Harris and Lott (1973) have sug-
gested that the depression of productivity in the afternoon relative to
the morning is an artifact of the productivity method and is associated
with inorganic carbon depletion in bottles sealed from the atmosphere.
Therefore, when incubations were terminated approximately at midday

due to oxygen supersaturation, primary productivity per day was calcu-
lated by assuming that productivity in the afternoon was the same as in
the morning. Vollenweider (1965) suggests that reasonable day rate
estimates are obtained by assuming a symmetrical daily curve of
instantaneous productivity rate. Therefore, partial day incubations
were expanded to day rate integrals by assuming that instantaneous
productivity followed the positive portion of a sine wave.

Calculations

Primary productivity and related parameters were calculated as follows:
1) R/HR = RT / N
2) Rp = R/HR - Dy
3) GPP/D

(Op - Og) + Ry, if incubation lasted from dawn to dusk.

4) GPP/H = (GPP/D) / Dy

5) When incubations were terminated at mid-day, GPP/H was calculated
by determining GPP for the half day incubation and dividing by the
length of the daylight portion of the incubation:

5a) GPP/H = ((0p - Og) + RT) / 0.5 Dy
5b) GPP/D = GPP/H - Dy
6) NPP/D = GPP/D - Rp

7) DBAL = GPP/D - (R/HR -24)

R/HR = dark bottle respiration, mg 02 L']h'];
Ry = total respiration for the entire incubation period, in mg 0, L‘];
N = duration of incubation, in hours;

hours of day light, in hours;

o
pu 4
n

Rp = respiration during daylight hours, in mg 0, L"];



GPP/D = gross productivity per day, mg 02 L‘],

Oa = concentrati?n of oxygen at the end of the incubation,
in mg 02 L™

Og = concentrati?n of oxygen at the beginning of the incubation,

in 0pmg L77;
GPP/H = gross productivity, in mg 0, L‘]h‘1;
NPP/D = net primary productivity, in mg 02 L’] per day;
DBAL =

net daily dissolved oxygen balance for a 24-hour period,
inmg 0, L7".

Alternative Techniques for the Measurement of Primary Productivity

Experiments were performed to select the procedure to measure primary
productivity that would minimize artifacts due to collection and incubation
techniques. The alternative techniques that were tested are listed below.

1. One-liter B.0.D. bottles were filled with samples and compared with
300 mL bottles to evaluate the effects of volume on primary production.
Samples were collected in the Alexandria, Va., channel.

2. Depth-integrated samples were obtained in Alexandria, Va., channel by
lowering an opaque rubber hose through the water column while pumping
with a plastic-impeller, centrifugal pump. Sample collection through a
hose is faster than with a depth-integrating bottle, but organisms may
be damaged by the pump or chemicals in the hose material.

3. Dark bottles with water from the Alexandria, Va., channel were incubated
in the 100-percent sunlight section of the incubation boxes and in the 6-
percent sunlight section and compared. Light may leak into sealed dark
bottles through pinhole flaws in the plastic coatings.

4, Point samples were collected at Marbury Point with a horizontal Niskin
bottle; the samples were then placed in the incubation boxes at a light
intensity equivalent to that at the depth from which the sample was re-
moved. The results were compared to those obtained from depth-integrated
samples from the same station.

5. Samples taken from Alexandria were placed in 300-mL B.0.D. bottles and
were suspended in the water column at depths equivalent to the following
light intensities: approximately 100-percent surface light (immersed just
below the water surface); 65; 30; 16: and 6-percent light intensity, and
were compared to similar samples in the incubation boxes.

6. Samples from Alexandria were incubated from 1100 to 1500 hours; daily
productivity then was calculated by the method of Vollenweider (1965).
The results were compared to those from all-day (10-hour) incubations.

- 10 -~



7. Dye-tracer studies suggest that the fresh, tidal Potomac River, from
Alexandria to Hallowing Point, mixes top to bottom in one hour or less
(W. E. Webb, U.S. Geol. Survey, personal commun.). To duplicate this
mixing pattern, samples from Marshall Hall were moved from one 1light
intensity in the incubation boxes to the next, consecutive intensity such
that they were mixed from 100-percent to 6-percent light in one hour and
back to 100-percent in the next hour. The pattern was repeated dawn to
dusk.

Measurement of Downwelling Irradiation

The extinction of light in the water column was determined by measuring
sunlight on the surface with the air-calibrated setting of a quantum sensor
and then measuring the depth of 1-percent 1ight with a water calibrated
setting. The depth of 1-percent light is considered the limit of the
photic zone, the zone at which productivity exceeds respiration (Parsons
and others, 1977).

The extinction coefficient, k, was determined from the Beer-Lambert-
Bouger law:

I = I,e1? (8)
where z = depth, in meters
I = light at depth z, in ueinsteinszm‘zs?C']
I, = surface light, in ueinsteiTs m~csec”
kI = extinction coefficient, m~

A Secchi depth was determined in conjunction with every extinction
coefficient measurement. Secchi depth is the depth at which brightness due
to scattering of light is the same as the brightness of light reflected
from a Secchi disc.

Secchi depth does not yield an accurate extinction coefficient because
scattering of light is related in a complex, non-linear manner to the number
and size of suspended particles and to the depth at which 1ight penetrates
through the water column. The Secchi depth, however, can be a valuable
source of information concerning turbidity and can be calibrated against
measurements taken with a light meter. When light measurements were not
available, the extinction coefficients were calculated as follows:

1.7
k.= —1
1" T, (9)

where Dg = Secchi depth in meters (Idso and Gilbert, 1974). The extinction
coefficient calculated using the Secchi depth tended to be 0.6 m-1 higher
than that determined using the quantum 1ight sensor (fig. 4). The coeffi-
cients determined from Secchi depth are marked with an asterisk in table
1. When more than one depth of 1-percent light or secchi depth was deter-

- 11 -
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Table 1.--Solar radiation extinction coefficients, (k), in the water column

At Alexandria, Virginia (A1 VA); Alexandria, Maryland channel
(A1 MD); Hatton Point (Hatton); Hallowing Point (Hal); Mount
Vernon (MtV); Quantico (Q); and Douglas Point (Dg) stations,

Extinction coefficients were determined using quantum sensor
measurements of the depth of 1 percent light except where
marked: * = k determined by secchi disc; t = k determined by
quantum sensor measurements of depth of 50 percent light,

Extinction Coefficients at, k, Stations

Productivity Al VA Al MD Hatton Hal MtV Dg Q

Dates

1980

05/22 -2.52 -2.33* ——— ——— -3.70%* -——— -——
05/29 ——— -———— ———- -—— ———- -2.30*  -3.,70*

06/23-06/24 -2.52 -3.04% ———— -———- -2.66* ———— -———
06/25-06/26 ———- ——— -—-- ———— ——— -2.65*  -2,79*
07/23-07/24 -2.74 -3.21* -2.02* -3.66% —a-- -—- ———
07/29-07/30 -2.53 -2.53 -2.83% “5.31%  we-- ———- ———
08/04-08/05 -2.33 -3.15 -2.21 -3.36 «--- -—— -—--
08/07-08/08 -1.99 -2.48 -1.95 -3.03  ~--- e -————
08/13-08/14 -3.34 -2.41 -2.41 -3.61  —e-- —— ———-
08/20-08/21 -3.20 -3.36 -1.59 -3.01 -e-- -——— -——-
08/25-08/26 -3.22 -1.68 -1.68 =3.52%  aee- ——— ——
09/03-09/04 -2.43% -2.35% -1.68 -3.02 ---- -———- e
09/15-09/16 -2.94* -1.99 -2.52 -3.36 === -—-- ————
11/18-11/19 -2.58* -—- -1.57 -2.36% ---- — -1.38
12/16-12/17 -1.82 -1.51 -2.28 -2.95  ---- -—— -2.30*

1981
02/04-02/05 -1.16 -1.16 -1.18* “2.54%  aea- ——— -1.16
04/01-04/02 -2.58% -3.04* -4,72* -6.78% ae-- -—— -3.54*
04/15-04/16 -3.68 -3.44% -3.09 -3.44 -e-- -———- ———
05/19-05/20 -2.52 -2.52 -2.48 -3.60 ~-a- -— -4.90
06/30-07/01 -3.03 -2.74 -2.88 -3.22 ew-- -—- -3.81
07/08-07/09 -2.43* -2.16 -1.78 -2.97 ---- -——- -4,15%
07/20-07/21 -1.33t -3.03 -1.95 -3.62% ~eu- -—-- -3.21%
08/03-08/04 -3.52 -— - ——— ———- -—- ——-
08/19-08/20 -2.79% -2.78% -1.95 -2.98*%  —e-- ———— -——-
08/25-08/26 -2.90 ———- ——— —— ———— ———— -—

- 13 -



mined during a single day, those determined closest to the time of sample
collection were averaged. A1l Secchi depths used were reported in Blanchard
and others (1982).

The extinction coefficients permit the calculation of a depth in the
water column equivalent to a percentage of surface light. The depth of
60 percent of surface light is 0.17 meter if k; = 3.0. Thus, the percentage
of surface 1ight in the productivity boxes can be converted to an equivalent
depth.

Calculation of Depth-integrated Productivity

Gross productivity under a unit surface area of a water body can be
calculated by integrating productivity from the surface to the bottom of
the water column

z
J Pdz (10)
!
where
z = depth, in meters
P = gross primary productivity, in units of oxygen

evolved or carbon produced per unit volume per
unit time.

The data required for the calculation are the gross productivities at
several depths and the depth of the representative water column. The
depths used were 2.2, 2.8, 3.9, and 5.6 meters at the Alexandria, Va.,
Maryland Channel, Hatton Point, and Hallowing Point Stations, respectively.

The percentage of surface 1ight in the productivity boxes was converted
to an equivalent depth with the extinction coefficient. The depth of one
percent 1ight is considered the compensation depth, the depth at which
gross productivity equals respiration (Parsons and others, 1977). Respi-
ration is assumed to be constant with depth. A graph of productivity
and respiration with depth is shown in figure 5. In figure 5, GPP is the
area under the gross productivity curve, R is the area under respiration
curve, and GPP minus R is net productivity per square meter.

There are several ways to calculate the area under the gross produc-
tivity curve. The curve can be integrated numerically, measured on graph
paper or approximated by empirical equations that are reported in the
literature (Talling, 1957).

The same three data sets were analyzed by the three different techni-
ques. First, a function that describes the productivity-depth relationship
was obtained using a third degree polynomial. The areas were calculated
by integrating the polynomial by Gaussian quadrature.

- 14 -
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Second, two equations were tested. One equation was derived by Talling
(1957). The other was Talling's equation modified by the authors of this
paper. Talling's method uses the equation

H p I
_ max_ (1p 2 (11)
where
P = productivity, g 0, m-3 day'1
z = depth, m
Pmax = maximum3rate ?f photosynthesis in the water column
g 0, m™ day~ 1
ky = water column extinction coefficient, m'2 !
I, = surface 1ight intensity, u einsteins m™“sec”
Ix, = value of light intensity at which the tangent to the linear
part of P versus I curve reaches a line drawn at Py, (Figure 6).
H = the limit of integration

The parameter Py, for equation (11) must be determined using the equa-
tion that describes the relationship of productivity to light intensity

_ I
P=Prax T3 Ko (12)
where
I = light intensity, neinsteins m-2 per day
Kp = light intensity at which P = 0.5 Ppay.

A nonlinear least-squares parameter-estimation technique (Bard, 1974)
was used to fit the productivity-light equation to each productivity experi-
iment and to estimate Ppax. In addition to Ppax, the half-saturation con-
stant, Ky, is also obtained. Figure 6 shows the typical relationship of
Pto I. Table 2 lists values of Py and K; determined for each station
and date on which a productivity measurement was made. Talling's parameter,
[y, is determined by drawing a line tangent to the initial, linear part of
the P versus I curve and observing where the line intercepts Pyax (fig. 6).
We calculated depth-integrated primary productivity using Talling's
equation.

Talling's parameter, Iy, is difficult to determine accurately because
the slope of the initial part of the P versus I graph is determined by
visual inspection (Talling, 1957). The slope, however, can be calculated
as the ratio of Ppax to Ky in which case Iy = Ky. The parameters Ky and
Pmax can be determined from equation (12). The values of Iy obtained by
graphical solution were compared K; calculated by equation 712) for ten
sets of data which yield a value of Kp/Ix = 0.59 (Standard Deviation =
0.12).
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GROSS PRODUCTIVITY, IN MILLIGRAMS OXYGEN
PER LITER PER MILLIGRAMS CHLOROPHYLL -a PER LITER

25

20

15

10

i Date=800729 -
; : : Station=Alexandria, Virginia
y | Pmax=25.4

| Km=17070000

: Standard Deviation=1.48

\ |/ | | |

2 4 6 8 10

LIGHT INTENSITY, IN MICROEINSTEINS
PER SQUARE METER PER DAY x 107

Figure 6.--Graph of gross primary productivity, in milligrams of oxygen

per liter per day, as a function of Tight intensity, in micro-
einsteins per square meter per second. [F = maximum pro-
ductivity, K_ = half-saturation constant, fpax. Talling's para-
meter. Soli& circles are measured data; so*id line is the best
non-linear, least-squares fit to the data. Horizontal, dashed
Tine is level of P___.----. represents line used to determine
Talling's Ik] max
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Talling used the coefficient 1.33 in equation (11) to approximate phyto-
synthetically active radiation (PAR) from measurements made with a thermo-
pile (Talling, 1957). We measured PAR and did not need the coefficient
1.33. Therefore, the equation for depth-integrated primary productivity
becomes

H
p I
_ max 0
J péz - K, ("oEsk ) (13)
0

The results obtained from equation 13 were compared to those calculated
from Talling's equation.

Gross productivity data also were plotted as a function of depth on
linear axes. A curve was drawn through the data points so that the area
under the curve could be measured. Area was estimated by counting grid
blocks. The results of the graphical determinations were used as a standard
to judge the Talling and modified Talling integration methods.

RESULTS AND DISCUSSION

Experimental design

The hypothesis that "gross primary productivity and respiration deter-
mined using 300-mL B.0.D. bottles was the same as those in 1l-liter bottles"
was accepted at the 5-percent significance level (table 4). Primary produc-
tivity in depth-integrated samples pumped through a hose was the same as
productivity in samples collected with a polyethelene bottle (5-percent
significance) (table 3). Respiration in samples taken by pump and hose,
however, was significantly lower than that in samples collected with the
depth-integrating bottle (5-percent significance) (table 3). The reduction
in respiration due to pumping has been observed in B.0.D. experiments (W. E.
Webb, personal commun., 1981). Respiration measured in dark bottles that
were exposed to full sunlight was less than respiration in bottles shielded
from full sunlight (5-percent significance) (table 3). The results suggest
that black plastic coatings and black paint may pass light through small
holes or flaws in the coatings.

Productivities determined from depth-integrated samples that were incu-
bated at 16-percent and 6-percent light were the same as productivities in
point samples collected at 1.5 meter (16-percent light) and 2.1 meter (6-
percent light) and incubated in 16- and 6-percent light (5-percent signi-
ficance) (table 4). Depth-integrated samples yielded higher productivity
measurements than those in point samples taken from and incubated at light
intensities equivalent to the surface and at 0.6 meter and 0.9 meter. Bot-
tles incubated in the water column were not significantly different from
those in the incubation boxes at the 100-, 65-, and 16-percent light inten-
sities, but were significantly different at 32-percent light (5-percent
significance level) (table 3).
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The 4 hour incubation, 1100 to 1500 hours, yielded estimates of pro-
ductivity calculated by the method of Vollenweider (1965) equal to the esti-
mates from 10-hour incubation (5-percent significance level) (table 4).

Productivity bottles that were moved from 100-percent to 6-percent light
and back to 100-percent light in two hours, had depth-integrated water column
productivities that were higher than those found with stationary bottles
(table 3).

We chose to incubate depth-integrated samples for primary productivity
determinations in 300-mL B.0.D. bottles that were placed in incubation boxes
and were kept at ambient temperatures. Although nylon-mesh neutral-density
screens do not change the spectral distribution of 1ight as does the extinc-
tion of 1light in a water column, most incubation-box determinations of pro-
ductivity were not significantly different than those done in the water
column, Because one liter bottles offered no advantages for productivity
measurements, required greater sample volumes, and were inconveniently large,
they were not used, Samples collected through an opaque hose suppressed
respiration. Therefore, all samples were collected with a depth-integrating
bottle. The data suggest that there may have been photosynthesis in dark
bottles exposed to bright sunlight. For additional accuracy of respiration
measurements, dark B.0.D. bottles were shielded from bright sunlight.

The fresh, tidal Potomac River from Alexandria to Hallowing Point can be
considered well mixed. Thus, point samples offered no advantage over depth-
integrated samples and were more time consuming to collect. Moreover, depth-
integrated samples are considered to be more representative of a well mixed
system,

The procedure that was selected to measure primary productivity is shown
in the flow-chart in figure 7. Samples were collected in the evening and
returned to a dockside laboratory at Alexandria, Va. for processing. Light
extinction was measured at each station at the time of sample collection.
Dockside incubation did not require boat time necessary for water column
incubations. Chlorophyll-a samples were taken from the well-mixed 20-liter
sample bottles, Samples were placed in 300-mL bottles, nutrients were added
to test for nutrient limitation, dissolved oxygen was measured and the bot-
tles were sealed and placed in the incubation boxes. The phytoplankton and
suspended sediment were dispersed by rotating the bottles every hour during
incubation. The incubations were terminated at dusk or at midday if de-
gassing was obvious. Dissolved oxygen was measured in, and a chlorophyl]
sample was taken from each bottle. Gross and net primary productivity and
respiration were calculated. The productivity-light relationship (equation
(12)) was used to estimate Ppax and Ky. Depth-integrated productivity was
calculated with the modified Talling equation (13).

Productivity studies were performed monthly, from May 1980 to September
1981, several times in August, twice in September 1980, and twice during the
week of August 4, 1980. The results of these efforts are presented in
table 6 (in the back of the report).

The standard error of the mean f?r the. method used for routine produc-
tivity measurements was 0.22 mg 0, L™ day™" for a 24 hour experiment (n=8).
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Table 5.--Depth-integrated gross primary productivity, determined
by the graphical method (1), numeric integration (2),

Talling's method (3) and the modified Talling method (4).

[Measurements in milligrams 0, per square meter per day]

Gross Productivity

Date Station 1 2 3 4

7/29/80 Alexandria, Va. 9.7 10.77 7.02 9.41
8/7/80 Alexandria, Va. 18.02 19.11 14.8 16.84
8/13/80 Hatton Point 23.62 12.6 18.78
5/19/81 Hallowing Point 1.66 1.23 1.73
7/8/81 Alexandria, Va. 8.82 10.94 6.57 8.92
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With a mean gross productivity of 6.90 mg 02 L'] per day, there is a 95
percent probability that the population mean lies between 7.32 and 6.48 mg 02
L-! per day. The standard error of the mean {or the oxygen probe used for all
but one of the exper1m?nts was 0.022 mg 0 L=+ at a mean dissolved oxygen
level of 9.93 mg 0, L 39) The stfndard error of the mean for
chlorophyl]l-a measurements was 0.15 ug L~=* when the mean concentration was
62.9 ug L=1 (n=5).

Depth-Integrated Productivity

The use of the modified "Talling" equation (Talling, 1957) yielded depth-
integrated productivities that were within 7 percent of the results obtained
graphically for four out of five cases and was within 20 percent in one case
(table 5). Talling's unmodified equation (Talling, 1957) yielded results
that differed as much as 32 percent from graphically determined values.

The "modified Talling" method was used to calculate depth-integrated
gross primary productivity for each station and date. The method gives re-
sults very close to those determined graphically and utilizes parameters,
Pmax and Kp, that are biologically meaningful., Thus, the equation can be
used for predictive purposes by using experimentally determined or literature
parameters, The depth-integrated productivities for each station and date
are reported in table 7.
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Table 6.--A list of the productivity and chlorophyll-a data from May
1980 to September 1981. The terms are defined in the text.
Data for 100 percent light and nutrient addition experiments
are an average of three tests., All other productivities are
an average of two tests. NO represents the nitrate, NH the
ammonia and PO the phosphate additions. Time is based on a

24 hour clock.
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ALEX MD

BEGINMIMNG DRATE 202723 YEAR MONTH DAY
SUHRIZE ffg IUHSET 2Znzz I lILTTnR% HOURS
TIMEIN 1%aa ea%?723 TIMEQUT Zooa gwdrt24  IH MILITARRY HOURS

OYERMIGHT INCUBRTION

TOTAL LIGHT SUHRISE TO SUNSET  9.SE+87  MICROEINSTEIMS-MZ/TAY

4LITE OR-0B R/HR CHL A GPFsH GFP/D MFF-D D BAL M- H</CHL GFP/H~-CHL
MG/L MG/LZH UG-L  MG/L/K MS/L/D MGrL  MGoL MG /L HAMGAL

**1‘*?*“*"******-‘-***-‘ q----a-t-w--h-v-*n-*-ud--yq -v-v--b-‘-e---o--o-q--ou.-u aon-d-‘--.,-.n--u--h--a-—-o——n--b-—

—r

3.87

gE 15,18 126.5  1.19 17.25 16.38 1S.63 8.8 a, 33
€5 12.21  8.87 125.5  1.95 15.22 14,28 12.66  T.77 g, 2%
32 11.88 9,87 126.5  B.29 12,95 1Z.81 11.3%3 6,57 7,85
16 2.94 8.87 125.5 @.32 4.6% 2.74 3.12  2.62 2,55
& 1.280 5.87 128.S5  0.28  2.%9 1.9 1.34 1,48 1,53
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BEGINNING DATE S9@723 YEAR MONTH DAY
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186 11,23 g.11 83,3 1.3% 12,99 13,35 17.321 12.31 19,85

£S5 19.41 .11 T3.8 1,39 (2,85 17,91 (5,97 18,32 1T7.83

32 19,81 #0110 33,8 1.31 1&.25 17.28 15,25 14,38 1S.650

ie 8.81 .11 &30 F.od 12,13 18,58 3,54 SeSa 19,14

& B.5& g.11 27,8 d.31 13,83 11,92 149,45 19,83 11,38

NO toa 11,321 B.1d B2.3 1.48 26,91 (&.23 17.92 19.25 21,032
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BEGIMHING DRTE 20384 YERRE MOMTH DAY

SUHRISE S5% SUMSET 2@1:z IN MILITREY HOURES

TIMEIN 1715 coased TIMEQUT 1234 Spagas  IN MILITARY HOURS

OYERMIGHT IMCUBATION
TOTAL LIGHT SUMRISE TO SUHSET 8.0E7 MICROEIHSTEIMS< MZ-DAY

(AR AN

Q

#LITE OR-0OB R/HE CHL A GFFsH GFF-sD HFF-D I BAL H<sHsCHL GFF/H-CHL
MG/L MG-LsH UG-L MGs/L~H MG/L-D MG-L MG-L MG/L/HAMG/L
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9.1  B.16 95,3 1.87 26.56 24.35 22.83  17.98 19.61
€5 £.55 @.16 183.8 1.77 25.17 22,96 Z1.44 15,57 17,87

32 7.56  @.16 182,23 1.62 23.@1 20,96 13,23 14.31 15,53

1€ S5.17  @.16 183,53 1.25 17.86 15.5% 14.87  18.94 11,48

6 1.44 6.16 £8.3 B.68 9.66 7.45 5.93  5.94 7.70
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MH 188 18,82 0,15 168.3 1,9% 22,28 26.11 24.81 18,32 19, 24
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SUNRISE ©l4 SUNSET 2007 IN MILITARY HOURS
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MG/L  MG-LoH UG L MGoLAH MG-LSD Mis-L MGAL MG L H 570

’*---Qw-----.‘*-o—-—éc‘---.-4--.-—-—o-‘_-‘-‘--—-—p——-p—‘—‘-p--oa‘v-- ----‘---‘--'
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NE 189 -&.39 9.92 2.8 4.91 13 =033 -a,33 0 -1.78 4,2%
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